LESSON PLAN 11						
CLASS: 9 SUBJECT: MATHEMATICS TEACHER'S NAME:						
NAME OF THE UNIT	SUB-TOPICS	NO OF PERIODS REQUIRED			Time line for teaching	
NAME OF THE UNIT	506-101105	Teaching	Practice	TOTAL	From	То
SURFACE AREAS AND VOLUMES	11.1 SURFACE AREA OF A RIGHT CIRCULAR CONE	2	3	5		
	11.2 SURFACE AREA OF A SPHERE	2	3	5		
	11.3 VOLUME OF A RIGHT CIRCULAR CONE	2	3	5		
	11.4 VOLUME OF A SPHERE	2	3	5		
	TOTAL	8	12	20		
PRE-REQUISITES & SKILLS	Every Pupil is expected to have basic knowledge in # visualising solid shapes # recognizing the surfaces like lateral surface, curved surf # Formulae related to areas of two dimensional shapes lik # basic mathematical operations .			to 3 dimensti	onal objects	

Learning Outcomes

After Completion of this lesson every student will be able to

distringuish between area and volume of a three dimensional object

arrive at formulae for finding the surface areas and volumes of cone & sphere.

calculate the lateral surface area and total surface area of conical and spherical shaped real life objects using the formulae.

utilize the formulae of volume of cone and sphere in calculating the volume of these objects in real life situations.

appriciate the utility of "SURFACE AREAS AND VOLUMES" in real life sums

Teaching Learning Process			
INTRODUCTION /INI	DUCTION	Experience & Reflection	
Teacher introduces the chapter of SURFACE AREAS AND VOLUMES by			
recalling their previous knowledge on areas and v	volumes of 3 dimensional objects		
like cuboid, cube, cylinder in their previous class.	Teacher briefs that cone can be		
considered as circular pyramid.		# Pupils will recollect their knowledge on surface areas and	
		 volumes of cuboids,cubes and cylinders and utilize that in exploring,learning and deducing the formulae for surface area and volume of cone and sphere. # Students will experience the usage of the concept of Surface areas and Volumes and appreciate its usage. 	

EXPLICIT TEACHING/TEACHER MODELLING (I DO)	GROUP WORK (WE DO)	INDEPENDENT WORK (YOU DO)	NOTES	
11.1. Surface Area of a right	Pupil groups will be instructed to cut	Every individual will	Surface area of a cone formulae	
	sectors out of a circle paper and twirl the	participate in the activity		
-	sector along its arc in such a way that the	and learn the concept of		
ů i	two radii touch along each other. It	finding the surface area of		
s 1 10	obviously forms a cone. Now each group	a cone		
and now briefs cone as a circular pyramid. Later teacher guides	will transform each cone into a sector and sub divide the sector into triangles by	$=\frac{1}{2}b_{1}l+\frac{1}{2}b_{2}l+$	$\frac{1}{2}b_{3}l + \frac{1}{2}b_{4}l + \dots$	
	keeping the slant height of the cone (circle			
	radius) as the the height of the triangle and	$=\frac{1}{2}l(b_1+b_2+b_3)$	(b ₃ + b ₄ +)	
-	bases will be parts of the arc. To find the	2 2 2 2 2 2 2	3 . 24	
	lateral surface area of the cone they add all	1		
	the areas of the triangles	$=\frac{1}{2}l(2\pi r)$	en har een har een har een har	
Surface Area o	f a Cone	$=\pi r$ I		
<i>~</i>		TOTAL SURFACE AREA OF CONE		
· — r	• T Lateral Surface Area = π r S Base Area = π r ²		ne(TSA) =base area+CSA Tr ² +Trl Tr(l+r)	

EXPLICIT TEACHING/TEACHER MODELLING (I DO)	GROUP WORK (WE DO)	INDEPENDENT WORK (YOU DO)	NOTES
11.2. Surface Area of a Sphere Teacher induces the concept of surface area of a sphere through an activity.	Pupil groups will be given rubber balls along with a thin rope and are instructed to stick the rope in such a way that it covers the entire ball. Then the part of the rope that covers the ball is now arranged to cover the area of circles with equivalent radius of the sphere. This obviously comes to a conclusion that the part of the rope that covered the sphere is equivalent to the area of 4 circles with same radius to that of a sphere e area = $4\pi R^2$ πR^2	Every individual will participate in the activity and learn the concept of finding the surface area of a sphere Surface Area of a	Surface area of a sphere formula Sphere Formula: Surface Area (SA) = $4\pi r^2$ here, $\pi = \frac{22}{7} = 3.141$, r = radius

EXPLICIT TEACHING/TEACHER MODELLING (I DO)	GROUP WORK (WE DO)	INDEPENDENT WORK (YOU DO)	NOTES
11.3. Volume of a right circular	Pupil groups will be given a cone and a	Every individual will	Volume of a cone formula
cone	cylinder with equal base radius and height.	participate in the activity	
Teacher explains the concept of	Now a heap of sand is also provided and	and learn the concept of	
Volume of a cone using laboratory	each group is instructed to fill the cylinder	finding the volume of a	
method by engaging children in an	with sand using the cone. It obviously end	cone	
actitivity where groups of children	up with 3 complete fillings of a cone makes	A	
are provided with a cylinder and a	a completely filled cylinder. Through this		
cone of equal base radius and	teacher guides children to arrive at the		<i>n</i>
height.	volume of cylinder = 3 x volume of cone		
	$V = \pi r^2 h$ $V = \frac{1}{3}\pi r^2 h$ h h h r r r r		tases iguales
			Figura 7

EXPLICIT TEACHING/TEACHER MODELLING (I DO)	GROUP WORK (WE DO)	INDEPENDENT WORK (YOU DO)	NOTES
11.4. Volume of a Sphere	Pupil groups will be given a sphere and a	Every individual will	Volume of a sphere formula
Teacher explains the concept of	cylinder with equal base radius and height .	participate in the activity	
Volume of a sphere using laboratory	Now a heap of sand is also provided and	and learn the concept of	
method by engaging children in an	each group is instructed to fill the cylinder	finding the volume of a	
actitivity where groups of children	with sand using the sphere. It obviously end	sphere	
are provided with 2 cylinders and a	up with 3 complete fillings of a sphere make		
sphere of equal radius	2 completely filled cylinders. Through this		
	teacher guides children to arrive at the		
	2xvolume of cylinder = 3 x volume of		
		Proof: Therefore, 3 * (Volume of sphere) = 2 * (Volume) 3 * (Volume of sphere) = 2 * (PI * 3 * (Volume of sphere) = 2 * PI * r Volume of sphere = 4/3 * PI Hence prov	ourings of sand into sphere to fill both the cylinders me of cylinder) r^{2*h} r^{3*h} $r^{3*h} = 2r$

CHECK FOR UNDERSTANDING QUESTIONS			
1. Factual	 1)Find the totalsurface area of a cone, if its slant height is 21m and diameter of its base is 24 m. 2) The diameter of a metallic ball is 4.2 cm. What is the mass of the ball, if the density of the metal is 8.9 g per cm³? 		
2. Open Ended/Critical Thinking	 Twenty seven solid iron spheres, each of radius r and surface area S are melted to form a sphere with surface area S'. Find the (i) radius r' of the new sphere, (ii) ratio of S and S'. A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is cm. Find the outer curved surface area of the bowl. 		
3.Student Practice questions & Activities	 A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin plating it on the inside at the rate of `16 per 100 cm² A joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 10 such caps. 		
4. Assessment	Exercise sums and worksheet on Surface Area & Volumes		